If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-150x+625=0
a = 6; b = -150; c = +625;
Δ = b2-4ac
Δ = -1502-4·6·625
Δ = 7500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7500}=\sqrt{2500*3}=\sqrt{2500}*\sqrt{3}=50\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-150)-50\sqrt{3}}{2*6}=\frac{150-50\sqrt{3}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-150)+50\sqrt{3}}{2*6}=\frac{150+50\sqrt{3}}{12} $
| 200m-100m+53,075=55,000-175m | | 200m-100m+58,500=61,200-200m | | 5y2-7y+1=0 | | 0=-2x^2+98x-720 | | 0=-2x^2+98x+720 | | 0=-2x^2+96x+720 | | 5s+5=8+2 | | -5x+5=-10x+8 | | 2(4s-2)=8s-4 | | 14x+2=4x+7 | | 3(x+2)/5-2=4(x-1) | | 3(x+2)-2/5=4(x-1) | | 33b^2+11b+10=0 | | 5(x+3)/2=7 | | (7y+2)^2+112=0 | | 0=-2x^2+99x+720 | | 9f−4=32 | | 6h/7-17=55/21 | | 7b+1=113 | | -7x+3=-3-29 | | 6h/7-17=5/5/21 | | -7x+3=(-3x)-29 | | 2 | | 19=-(9.5x/3) | | 14−2x=68−x | | 3x+2+5x-7=19 | | -9x+2.2=-3x+7.0x= | | x+2x+4x+8x=135 | | 5x+3=6x+4 | | (x+70)+(20-x)=90 | | 7a+1=4a+1 | | 19=(-9.5x/3) |